dc.contributor.author |
Theodorou, D |
en |
dc.contributor.author |
Zannikou, Y |
en |
dc.contributor.author |
Zannikos, F |
en |
dc.date.accessioned |
2014-03-01T11:46:59Z |
|
dc.date.available |
2014-03-01T11:46:59Z |
|
dc.date.issued |
2012 |
en |
dc.identifier.issn |
09491775 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/38041 |
|
dc.subject |
Calibration curve |
en |
dc.subject |
Fuel |
en |
dc.subject |
GUM |
en |
dc.subject |
Monte Carlo method |
en |
dc.subject |
Sulfur mass concentration |
en |
dc.subject |
Uncertainty |
en |
dc.title |
Estimation of the standard uncertainty of a calibration curve: Application to sulfur mass concentration determination in fuels |
en |
heal.type |
other |
en |
heal.identifier.primary |
10.1007/s00769-011-0852-4 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s00769-011-0852-4 |
en |
heal.publicationDate |
2012 |
en |
heal.abstract |
The construction of a calibration curve using least square linear regression is common in many analytical measurements, and it comprises an important uncertainty component of the whole analytical procedure uncertainty. In the present work, various methodologies are applied concerning the estimation of the standard uncertainty of a calibration curve used for the determination of sulfur mass concentration in fuels. The methodologies applied include the GUM uncertainty framework, the Kragten numerical method, the Monte Carlo method (MCM) as well as the approximate equation calculating the standard error of prediction. The standard uncertainty results obtained by all methodologies agree well (0.172-0.175 ng μL-1). Aspects of inappropriate use of the approximate equation of the standard error of prediction, which leads to overestimation or underestimation of calculated uncertainty, are discussed. Moreover, the importance of the correlation between calibration curve parameters (slope and intercept) within GUM, MCM and Kragten approaches is examined. © 2011 Springer-Verlag. |
en |
heal.journalName |
Accreditation and Quality Assurance |
en |
dc.identifier.doi |
10.1007/s00769-011-0852-4 |
en |
dc.identifier.volume |
17 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
275 |
en |
dc.identifier.epage |
281 |
en |