HEAL DSpace

On the capability of generalized continuum theories to capture dispersion characteristics at the atomic scale

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Fafalis, DA en
dc.contributor.author Filopoulos, SP en
dc.contributor.author Tsamasphyros, GJ en
dc.date.accessioned 2014-03-01T11:47:07Z
dc.date.available 2014-03-01T11:47:07Z
dc.date.issued 2012 en
dc.identifier.issn 09977538 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/38090
dc.subject Born-Karman's model en
dc.subject Dispersion relation en
dc.subject Gradient elasticity en
dc.subject Nonlocal elasticity en
dc.title On the capability of generalized continuum theories to capture dispersion characteristics at the atomic scale en
heal.type other en
heal.identifier.primary 10.1016/j.euromechsol.2012.02.004 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.euromechsol.2012.02.004 en
heal.publicationDate 2012 en
heal.abstract Generalized theories of continuum mechanics, such as gradient and nonlocal elasticity, have been widely used to account for the small scale effects on materials' behavior when dealing with structures at the micro- or nano- scale. It has been demonstrated that these enhanced theories provide better approximations that are closer to experimental observations than classical ones for problems in the field of fracture mechanics, dislocations, and wave propagation.The present work investigates the capability of one-dimensional elastic models -gradient, nonlocal and mixed- to predict the dispersive behavior of traveling waves, in comparison with the Born-Karman model of lattice dynamics. The linear theories adopted herein are limited to Mindlin's first (grade 2) and second (grade 3) strain gradient theories in elasticity with two and three intrinsic parameters and Eringen's nonlocal elasticity theory with one and two intrinsic parameters. Mixed models of nonlocal and gradient theories with up to three intrinsic parameters are also considered.More specifically, seven 1D models are considered: one grade 2 elastic bar with micro-inertia, one grade 3 elastic 1D model, three nonlocal elastic bars -two with Helmholtz operator, and one with bi-Helmholtz operator after Lazar et al. (2006), one mixed nonlocal. /grade 2 elastic bar with Helmholtz operator, and the mixed nonlocal model after Challamel et al. (2009).Only three models, under specific assumptions for their intrinsic parameters, result in matching satisfactorily the dispersion curve of Born-Karman's atomic model. The rest suffer violation of their fundamental thermodynamic restrictions. This violation is naturally explained by further analyzing the mathematical structure of the obtained dispersion relations, via Padé approximants, whose coefficients are directly related to each model's intrinsic parameters. © 2012 Elsevier Masson SAS. en
heal.journalName European Journal of Mechanics, A/Solids en
dc.identifier.doi 10.1016/j.euromechsol.2012.02.004 en
dc.identifier.volume 36 en
dc.identifier.spage 25 en
dc.identifier.epage 37 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής