Polynomial C1 shape functions on the triangle

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Papanicolopulos, S-A en
dc.contributor.author Zervos, A en
dc.date.accessioned 2014-03-01T11:47:07Z
dc.date.available 2014-03-01T11:47:07Z
dc.date.issued 2012 en
dc.identifier.issn 00457949 en
dc.identifier.uri http://hdl.handle.net/123456789/38097
dc.subject C1 continuity en
dc.subject Finite elements en
dc.subject Gradient elasticity en
dc.subject Shape functions en
dc.subject Triangular element en
dc.title Polynomial C1 shape functions on the triangle en
heal.type other en
heal.identifier.primary 10.1016/j.compstruc.2012.07.003 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.compstruc.2012.07.003 en
heal.publicationDate 2012 en
heal.abstract We derive generic formulae for all possible C1 continuous polynomial interpolations for triangular elements, by considering individual shape functions, without the need to prescribe the type of the degrees of freedom in advance. We then consider the possible ways in which these shape functions can be combined to form finite elements with given properties. The simplest case of fifth-order polynomial functions is presented in detail, showing how two existing elements can be obtained, as well as two new elements, one of which shows good numerical behaviour in numerical tests. © 2012 Elsevier Ltd. All rights reserved. en
heal.journalName Computers and Structures en
dc.identifier.doi 10.1016/j.compstruc.2012.07.003 en

Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record