Η τεχνολογία άντλησης/ταμίευσης αποτελεί μια τεχνολογία με διαπιστωμένα υψηλή αποδοτικότητα που προσφέρει τη δυνατότητα ρύθμισης του ενεργειακού ισοζυγίου μέσω της αποθήκευσης ενέργειας σε μεγάλη κλίμακα. Η αποθήκευση ενέργειας πραγματοποιείται μέσω της άντλησης νερού σε ταμιευτήρες που βρίσκονται σε υψηλότερο υψόμετρο αξιοποιώντας ενδεχόμενη περίσσεια στην παραγωγή (όπως για παράδειγμα την περίσσεια νυχτερινής παραγωγής λόγω της μειωμένης ζήτησης). Το νερό αυτό στη συνέχεια χρησιμοποιείται για την παραγωγή υδροηλεκτρικής ενέργειας με στόχο την κάλυψη αιχμών της ζήτησης. Η περίσσεια αυτή μπορεί να ληφθεί από άλλες ανανεώσιμες πηγές ενέργειας, οι οποίες μπορούν να ενσωματωθούν σε ένα ενιαίο σύστημα υδροηλεκτρικών έργων-άλλων ΑΠΕ ώστε να σχηματίσουν αυτόνομα υβριδικά συστήματα ανανεώσιμης ενέργειας. Ο βέλτιστος σχεδιασμός και η διαχείριση αυτών των συστημάτων απαιτεί μια ολιστική προσέγγιση όπου θα αναπαρίσταται πιστά η αβεβαιότητα. Στα πλαίσια της εργασίας προτείνεται ένα μεθοδολογικό πλαίσιο βασισμένο στη στοχαστική προσομοίωση και τη βελτιστοποίηση. Το πλαίσιο αυτό εξετάζεται σε ένα ήδη υπάρχον υδροσύστημα του ελληνικού χώρου (υδροσύστημα Αλιάκμονα), θεωρώντας συνδυασμένη λειτουργία με ένα υποθετικό αιολικό πάρκο. Για το σύνολο του συστήματος αναζητούμε το βέλτιστο σχεδιασμό ώστε να εξασφαλίσουμε την πλέον αποδοτική λειτουργία του ευρύτερου πλαισίου.
Pumped storage is a proven technology with very high efficiency that offers a unique large-scale energy buffer. Energy storage is employed by pumping water upstream to take advantage of the excess of energy (e.g. during night) and next retrieving this water to generate hydro-power during demand peaks. This excess can be offered by other renewables, which can be integrated within hydroelectric systems with pumped storage facilities to formulate autonomous hybrid renewable energy systems (HRES). The optimal planning and management of HRES requires a holistic overview, where uncertainty is properly represented. In this context, a novel framework is proposed, based on stochastic simulation and optimization. This is tested in an existing hydrosystem of Greece, considering its combined operation with a hypothetical wind power system, for which we seek the optimal design to ensure the most beneficial performance of the overall scheme.