HEAL DSpace

Ανάλυση Συναισθήματος και Γνώμης

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Βλαχοστεργίου, Αγγελική Σπυριδούλα el
dc.date.accessioned 2020-07-24T08:57:41Z
dc.date.available 2020-07-24T08:57:41Z
dc.date.issued 2020-07-24
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/50977
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.18675
dc.description.abstract α τελευταία χρόνια έχει παρατηρηθεί μία αύξηση του αριθμού των προσπαθειών για την αυτόματη αναγνώριση και κατηγοριοποίηση του ανθρωπίνου συναισθήματος χρησιμοποιώντας σήματα φυσιολογίας, σήματα από το πρόσωπο, τη φωνή, καθώς επίσης και προσωπικές ερμηνείες από κείμενα μεγάλων κοινωνικών δεδομένων. Αρκετοί είναι οι τομείς της έρευνας που θα μπορούσαν να επωφεληθούν από αυτά τα συστήματα: διαδραστικά συστήματα διδασκαλίας, τα οποία να επιτρέπουν στους εκπαιδευτικούς να γνωρίζουν το άγχος των φοιτητών, πρόληψη των ατυχημάτων (π.χ. εντοπισμός της κόπωσης του οδηγού), στρατιωτικά ομαδικά καθήκοντα που χαρακτηρίζονται από μεγάλης διάρκειας περιόδους άγχους και πίεσης και εφαρμογές στον τομέα της Υγείας για την έγκαιρη διάγνωση νευροεκφυλιστικών νόσων (π.χ. νόσος του Πάρκινσον), όπου η εκδήλωση των συμπτωμάτων συμβαίνει πολλά χρόνια μετά την έναρξη του νευροεκφυλισμού. Ωστόσο, παρά τις μέχρι τώρα ερευνητικές προσπάθειες, δεν έχει επιτευχθεί ο μακροπρόθεσμος στόχος της δημιουργίας ενός ισχυρού πλαισίου αναγνώρισης του εξεταζόμενου τομέα έρευνας που να βασίζεται στην ανάλυση και στην ερμηνεία του. Δεν υπάρχει καμία αμφιβολία ότι η “δημιουργία του συναισθήματος” (affect production) επηρεάζεται από το εκάστοτε πλαίσιο που λαμβάνει χώρα τη δεδομένη στιγμή, όπως το έργο στο οποίο υποβάλλεται ο χρήστης, τα άτομα που αλληλεπιδρούν με το χρήστη, η ταυτότητα αλλά και η εκφραστικότητά τους. Η οποιαδήποτε λοιπόν συμπληρωματική μορφή πληροφορίας πλαισίου αναφορικά με τον εξεταζόμενο τομέα έρευνας μας βοηθά ώστε να απαντήσουμε στο ερώτημα: τί είναι πιθανότερο να συμβεί, εκτρέποντας έτσι τον ταξινομητή από τις πιθανότερες/σχετικές κατηγορίες. Χωρίς το πλαίσιο, ακόμη και οι άνθρωποι μπορεί να παρερμηνεύουν τις παρατηρούμενες εκφράσεις του. Έτσι, με την αντιμετώπιση των προκλήσεων υπό το πρίσμα της αναγνώρισης του συναισθήματος υπό συγκεκριμένο πλαίσιο (context-aware affect analysis), δηλαδή με την καλύτερη μελέτη των πληροφοριών πλαισίου, με την ερμηνεία του σε συγκεκριμένους τομείς εφαρμογών, την αναπαράστασή του, τη μοντελοποίησή του, μπορούμε να προσεγγίσουμε καλύτερα την αναγνώριση του συναισθήματος σε πραγματικό χρόνο. Αντίστοιχα, στον τομέα των προσωπικών ερμηνειών από το κείμενο (Sentiment Analysis) αλλά και γενικότερα στον τομέα της Φυσικής Γλώσσας (Natural Language Processing (NLP)) η συνεισφορά του πλαισίου έγκειται στην καλύτερη αναγνώριση, ερμηνεία και επεξεργασία των απόψεων (opinions) και συναισθημάτων (sentiments) σε κείμενα, τα οποία εξετάζονται σε επίπεδο κειμένου (document-level), προτάσεων (sentence-level) και χαρακτηριστικών (aspect-level) αντίστοιχα. Στην περίπτωση αυτή, λαμβάνονται υπόψιν η σημασιολογία, οι γνωστικές και οι συναισθηματικές πληροφορίες των υποκειμενικών απαντήσεων των ατόμων. Ειδικότερα, στον τομέα αυτό, η συνεισφορά μας έγκειται στην εκπαίδευση ισχυρών αναπαραστάσεων χαρακτηριστικών από μη επισημειωμένα δεδομένα με τη χρήση Νευρωνικών Δικτύων και συγκεκριμένα με τη χρήση των Ανταγωνιστικά Παραγωγικών Μοντέλων (GANs), η χρήση των οποίων έχει επιδείξει εντυπωσιακά αποτελέσματα στον τομέα της Όρασης Υπολογιστών. Η πρωτοτυπία της συγκεριμένης μεθόδου έγκειται στον τρόπο υλοποίησης του μοντέλου, στην επιλογή των υπερπαραμέτρων, στη χρήση μη επιβλεπόμενης μάθησης και στην πειραματική επικύρωση του προτεινόμενου μοντέλου σε σώματα κειμένου που προέρχονται από διαφορετικές πηγές αναφορικά με το είδος τους και την έκτασή τους. el
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/gr/ *
dc.subject Ανάλυση συναισθήματος el
dc.subject Ανάλυση γνώμης el
dc.subject Εννοιολογικό πλαίσιο el
dc.subject Αναπαράσταση συναισθήματος el
dc.subject Μονοτροπική και πολυτοπική αναγνώριση συναισθήματος el
dc.subject Εκμάθηση Αναπαράστασης Φυσικής Γλώσσας el
dc.subject Βαθιά νευρωνικά δίκτυα el
dc.subject Ανταγωνιστικά παραγωγικά δίκτυα el
dc.subject Emotion analysis en
dc.subject Sentiment analysis en
dc.subject Context en
dc.subject Unimodal and multimodal emotion analysis en
dc.subject Natural language processing representation learning en
dc.subject Deep neural networks en
dc.subject Generative Adversarial Neural Networks (GANS) en
dc.title Ανάλυση Συναισθήματος και Γνώμης el
dc.contributor.department Τομέας Τεχνολογίας Πληροφορικής & Υπολογιστών el
heal.type doctoralThesis
heal.classification Συναισθηματική Υπολογιστική el
heal.classification Ανάλυση Γνώμης el
heal.language el
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2018-11-26
heal.advisorName Σταφυλοπάτης, Ανδρέας Γεώργιος el
heal.committeeMemberName Σταφυλοπάτης, Ανδρέας Γεώργιος el
heal.committeeMemberName Στάμου, Γεώργιος el
heal.committeeMemberName Καρπούζης, Κωνσταντίνος el
heal.committeeMemberName Τσανάκας, Παναγιώτης el
heal.committeeMemberName Μυλωνάς, Φοίβος el
heal.committeeMemberName Καρυδάκης, Γεώργιος el
heal.committeeMemberName Σπύρου, Ευάγγελος el
heal.academicPublisher Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών el
heal.academicPublisherID ntua
heal.numberOfPages 130 σ.
heal.fullTextAvailability true


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα