HEAL DSpace

Kinetic model development and CFD simulation of a silicon oxynitride (SiOxNy) CVD process from TDMSA/O2 mixtures

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Tsiros, Tryfon en
dc.date.accessioned 2021-01-14T07:38:57Z
dc.date.available 2021-01-14T07:38:57Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/52773
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.20471
dc.rights Default License
dc.subject CVD en
dc.subject Silicon oxynitrides en
dc.subject Kinetic Model en
dc.subject Simulation en
dc.subject Computational fluid dynamics en
dc.title Kinetic model development and CFD simulation of a silicon oxynitride (SiOxNy) CVD process from TDMSA/O2 mixtures en
dc.contributor.department Ανάλυσης, Σχεδιασμού και Ανάπτυξης Διεργασιών και Συστημάτων el
heal.type bachelorThesis
heal.classification Computational Fluid Dynamics el
heal.language el
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2020-09-25
heal.abstract Silicon oxynitrides thin films have a very wide application in optical devices, dielectric materials, and optical waveguide materials. Additionally, 𝑆�𝑖�𝑂�𝑥�𝑁�𝑦� films also have high chemical stability, high resistance to impurity diffusion, and water vapor permeability, properties that are highly required for applications in barrier devices such as gas barriers, making this material a promising candidate. The present thesis focuses on the formation of thin 𝑆�𝑖�𝑂�𝑥�𝑁�𝑦� films through a relatively moderate temperature thermal CVD process (T=650°C) at atmospheric pressure. The chemistry selected to undertake this task is a mixture of tris-dimethylsilyl-amine (TDMSA) and O2, a novel chemistry where nitrogen and silicon atoms originate from the precursor itself and nitrogen not being supplied by an external gas source like ammonia. For this research, a tubular horizontal hot-wall reactor configuration has been utilized to produce the silicon oxynitride material and the development of the respective chemical model. Ellipsometry and FTIR are the main instruments used for the solid phase analysis and characterization of the films, with Ellipsometry supplying a large amount of data relating to the deposition rate and composition, aiding the simulations substantially. The development of the model is additionally also based on gas phase results from GC-MS, liquid NMR and ESR analyses. The combined use of solid-state and gas phase results were thus used as the main feedback for the present work, in order to develop an apparent kinetic model, that could replicate the deposition mechanism from the TDMSA+O2 chemical system in a simplified manner. Lastly, the kinetic model constructed for this system is implemented in the simulation software ANSYS® FLUENT® 18.2 and aims to recreate the experiments with satisfactory accuracy through the use of computational fluid dynamics, opening the way to further possibilities for process optimization. en
heal.advisorName Boudouvis, Andreas G. en
heal.committeeMemberName Τσόπελας, Φώτιος el
heal.committeeMemberName Vahlas, Constantin en
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Χημικών Μηχανικών. Τομέας Ανάλυσης, Σχεδιασμού και Ανάπτυξης Διεργασιών και Συστημάτων (ΙΙ) el
heal.academicPublisherID ntua
heal.numberOfPages 69 p. en
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής