dc.contributor.author | Drimiskianakis, Zacharias![]() |
en |
dc.contributor.author | Δριμισκιανάκης, Ζαχαρίας![]() |
el |
dc.date.accessioned | 2025-03-19T09:46:57Z | |
dc.date.available | 2025-03-19T09:46:57Z | |
dc.identifier.uri | https://dspace.lib.ntua.gr/xmlui/handle/123456789/61359 | |
dc.identifier.uri | http://dx.doi.org/10.26240/heal.ntua.29055 | |
dc.rights | Αναφορά Δημιουργού - Μη Εμπορική Χρήση - Παρόμοια Διανομή 3.0 Ελλάδα | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/3.0/gr/ | * |
dc.subject | Computer vision | en |
dc.subject | Image inpainting | en |
dc.subject | Remote sensing | en |
dc.subject | Deep learning | en |
dc.subject | Diffusion models | en |
dc.subject | sdxl for inpainting | en |
dc.subject | Textual inversion | en |
dc.subject | lora | en |
dc.subject | Dreambooth | en |
dc.subject | Όραση υπολογιστών | el |
dc.subject | Ενδοσυμπλήρωση εικόνας | el |
dc.subject | Τηλεπισκοπικές εικόνες | el |
dc.subject | Βαθιά μάθηση | el |
dc.subject | Μοντέλα διάχυσης | el |
dc.subject | Κειμενική αντιστροφή | el |
dc.title | Content replacement and inpainting in sections of remote sensing images using deep learning techniques. | en |
dc.title | Αντικατάσταση περιεχομένου και ενδοσυμπλήρωση σε τμήματα τηλεπισκοπικών εικόνων με τεχνικές βαθιάς μάθησης. | el |
heal.type | bachelorThesis | |
heal.generalDescription | Η παρούσα εργασία εστιάζει στην ενδοσυμπλήρωση τηλεπισκοπικών εικόνων υψηλής ανάλυσης χρησιμοποιώντας προηγμένες μεθόδους βαθιάς μάθησης, με ιδιαίτερη έμφαση στα μοντέλα διάχυσης. | el |
heal.classification | Remote sensing | en |
heal.classification | Τηλεπισκόπηση | el |
heal.language | el | |
heal.language | en | |
heal.access | free | |
heal.recordProvider | ntua | el |
heal.publicationDate | 2024-10-16 | |
heal.abstract | The present bachelor thesis focuses on the inpainting of high-resolution remote sensing images using advanced deep learning methods, with particular emphasis on diffusion models. Initially, a theoretical background on inpainting methods is provided, which is explored through classical computer vision techniques and modern deep learning approaches. Special attention is given to diffusion models, explaining their structure, training methods, sampling procedures, and advanced variations. Next, an initial methodology and corresponding execution examples are presented, implemented to examine the capability of the chosen diffusion model to handle various scenarios of remote sensing image inpainting. Based on the conclusions and limitations of the aforementioned methodology, a new methodology is introduced, along with execution examples, focusing on localized content replacement. Moreover, tests for inpainting were conducted on the NIR channel, along with attempts for guided image generation using a ControlNet model and fine-tuning tests of the pre-trained model on specific remote sensing entities using methods such as Textual Inversion and Dreambooth. In the final conclusions and recommendations for improvement, the strengths and limitations of the approach are highlighted, with suggestions for enhancing the accuracy and efficiency of inpainting methods on high-resolution remote sensing images. | en |
heal.sponsor | Hellenic Military Geographical Service | en |
heal.advisorName | Karantzalos, Konstantinos | en |
heal.committeeMemberName | Karathanasi, Vasilia | en |
heal.committeeMemberName | Papoutsis, Ioannis | en |
heal.academicPublisher | Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Αγρονόμων και Τοπογράφων Μηχανικών. Τομέας Τοπογραφίας. Εργαστήριο Τηλεπισκόπησης | el |
heal.academicPublisherID | ntua | |
heal.numberOfPages | 139 σ. | el |
heal.fullTextAvailability | false | |
heal.fullTextAvailability | false |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: