dc.contributor.author | Ζαχαρόπουλος, Χρήστος![]() |
el |
dc.contributor.author | Zacharopoulos, Christos![]() |
en |
dc.date.accessioned | 2025-04-02T06:18:25Z | |
dc.date.available | 2025-04-02T06:18:25Z | |
dc.identifier.uri | https://dspace.lib.ntua.gr/xmlui/handle/123456789/61557 | |
dc.identifier.uri | http://dx.doi.org/10.26240/heal.ntua.29253 | |
dc.rights | Αναφορά Δημιουργού - Μη Εμπορική Χρήση - Παρόμοια Διανομή 3.0 Ελλάδα | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/3.0/gr/ | * |
dc.subject | Physics-Informed Neural Networks | en |
dc.subject | Non-Newtonian Fluids | en |
dc.subject | Forward Problem Solution | en |
dc.subject | Inverse Problem Solution | en |
dc.subject | Power-law Fluid Flow | en |
dc.subject | Physics-Informed Νευρωνικά Δίκτυα | en |
dc.subject | Μη-Νευτωνικά Ρευστά | el |
dc.subject | Επίλυση Forward Προβλήματος | el |
dc.subject | Επίλυση Inverse Προβλήματος | el |
dc.subject | Ροή Power-law Ρευστού | el |
dc.title | Application of physics-Informed neural networks for the solution of non-Newtonian fluid flows | en |
heal.type | masterThesis | |
heal.classification | Computational Fluid Mechanics | en |
heal.classification | Machine Learning | en |
heal.classification | Neural Networks | en |
heal.language | en | |
heal.access | free | |
heal.recordProvider | ntua | el |
heal.publicationDate | 2024-10 | |
heal.abstract | In this Master’s Thesis, Physics-Informed Neural Networks (PINNs) models are developed to approximate the solutions of non-Newtonian fluid flows. PINNs are deep learning models incorporating a specially designed loss function, which allows for respecting the physical laws. This loss function consists of several terms, representing the residuals of the partial differential equations (PDEs), the boundary conditions and the observation data, if available. Dynamic balancing of these terms during training is utilized, enhancing the robustness and the effectiveness of the PINN model. The purpose of this Thesis is to solve both forward and inverse problems involving PDEs that describe the flow of power-law fluids. In the forward problem, the PINN model produces accurate results for a range of power-law fluids. For the inverse problem, the PINN model effectively infers unknown power-law parameters utilizing a limited set of observation data, derived from a CFD simulation of the examined flow. It is important to note that said parameter inference is achieved with minimal modifications to the code developed for the forward problem and only a small increase in the computational cost, indicating an advantage over classical numerical methods for inverse problems. The outcomes show great promise for expanding this approach to higher dimensions, more complex geometries, and more advanced models of non-Newtonian fluids. | en |
heal.advisorName | Kavousanakis, Mihalis | en |
heal.committeeMemberName | Boudouvis, Andreas G. | en |
heal.committeeMemberName | Sarimveis, Haralambos | en |
heal.academicPublisher | Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Χημικών Μηχανικών | el |
heal.academicPublisherID | ntua | |
heal.numberOfPages | 62 σ. | el |
heal.fullTextAvailability | false |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: