HEAL DSpace

Application of physics-Informed neural networks for the solution of non-Newtonian fluid flows

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Ζαχαρόπουλος, Χρήστος el
dc.contributor.author Zacharopoulos, Christos en
dc.date.accessioned 2025-04-02T06:18:25Z
dc.date.available 2025-04-02T06:18:25Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/61557
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.29253
dc.rights Αναφορά Δημιουργού - Μη Εμπορική Χρήση - Παρόμοια Διανομή 3.0 Ελλάδα *
dc.rights.uri http://creativecommons.org/licenses/by-nc-sa/3.0/gr/ *
dc.subject Physics-Informed Neural Networks en
dc.subject Non-Newtonian Fluids en
dc.subject Forward Problem Solution en
dc.subject Inverse Problem Solution en
dc.subject Power-law Fluid Flow en
dc.subject Physics-Informed Νευρωνικά Δίκτυα en
dc.subject Μη-Νευτωνικά Ρευστά el
dc.subject Επίλυση Forward Προβλήματος el
dc.subject Επίλυση Inverse Προβλήματος el
dc.subject Ροή Power-law Ρευστού el
dc.title Application of physics-Informed neural networks for the solution of non-Newtonian fluid flows en
heal.type masterThesis
heal.classification Computational Fluid Mechanics en
heal.classification Machine Learning en
heal.classification Neural Networks en
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2024-10
heal.abstract In this Master’s Thesis, Physics-Informed Neural Networks (PINNs) models are developed to approximate the solutions of non-Newtonian fluid flows. PINNs are deep learning models incorporating a specially designed loss function, which allows for respecting the physical laws. This loss function consists of several terms, representing the residuals of the partial differential equations (PDEs), the boundary conditions and the observation data, if available. Dynamic balancing of these terms during training is utilized, enhancing the robustness and the effectiveness of the PINN model. The purpose of this Thesis is to solve both forward and inverse problems involving PDEs that describe the flow of power-law fluids. In the forward problem, the PINN model produces accurate results for a range of power-law fluids. For the inverse problem, the PINN model effectively infers unknown power-law parameters utilizing a limited set of observation data, derived from a CFD simulation of the examined flow. It is important to note that said parameter inference is achieved with minimal modifications to the code developed for the forward problem and only a small increase in the computational cost, indicating an advantage over classical numerical methods for inverse problems. The outcomes show great promise for expanding this approach to higher dimensions, more complex geometries, and more advanced models of non-Newtonian fluids. en
heal.advisorName Kavousanakis, Mihalis en
heal.committeeMemberName Boudouvis, Andreas G. en
heal.committeeMemberName Sarimveis, Haralambos en
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Χημικών Μηχανικών el
heal.academicPublisherID ntua
heal.numberOfPages 62 σ. el
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού - Μη Εμπορική Χρήση - Παρόμοια Διανομή 3.0 Ελλάδα Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού - Μη Εμπορική Χρήση - Παρόμοια Διανομή 3.0 Ελλάδα