Στην μεταπτυχιακή αυτή εργασία γίνεται προσπάθεια να μελετηθεί η υστερητική συμπεριφορά πεπερασμένων στοιχείων κελύφους Ένα πρόβλημα ιδιαίτερης σημασίας στην επιστήμη του Δομοστατικού Πολιτικού Μηχανικού αφορά την απόκριση ελαστοπλαστικών κατασκευών υποκείμενων σε στατικά ή δυναμικά φορτία. Προκειμένου η ανελαστική απόκριση να ληφθεί υπόψη, πιο ακριβή υστερητικά προσομοιώματα χρειάζεται να χρησιμοποιηθούν. Έτσι, στην εργασία αυτή χρησιμοποιείται το μοντέλο Bouc – Wen, το οποίο είναι ανεξάρτητο του ρυθμού επιβολής της φόρτισης (rate independent). Το προσομοίωμα αυτό αποδεικνύεται ιδιαίτερα εύχρηστο καθώς επιτρέπει την προσομοίωση οποιασδήποτε υστερητικής συμπεριφοράς με τη χρήση μίας μόνο ομαλής συνάρτησης.
Προκειμένου να εξεταστεί η υστερητική συμπεριφορά στοιχείων κελύφους, αναπτύχθηκε κώδικας πεπερασμένων στοιχείων στη γλώσσα προγραμματισμού MATLAB, στον οποίο χρησιμοποιούνται ισοπαραμετρικά στοιχεία κελύφους εννέα κόμβων. Το πρόγραμμα έχει την ικανότητα να προσομοιώσει τόσο στοιχεία μονής καμπυλότητας όσο και στοιχεία διπλής καμπυλότητας καθώς η εισαγωγή της γεωμετρίας γίνεται με έμμεσο τρόπο χρησιμοποιώντας ένα κατάλληλο σύστημα αξόνων σε κάθε κόμβο. Το μητρώο δυσκαμψίας της κατασκευής αποτελείται από δύο μέρη, ένα ελαστικό και ένα υστερητικό. Το ελαστικό μέρος παραμένει σταθερό κατά τη διάρκεια της ανάλυσης ενώ, το υστερητικό πρέπει να υπολογίζεται σε κάθε βήμα. Το σύστημα των διαφορικών εξισώσεων που περιγράφει το πρόβλημα, λύνεται δυναμικά χρησιμοποιώντας τη Μέθοδο Αριθμητικής Ολοκλήρωσης Newmark. Τέλος, ένα πλήθος αριθμητικών εφαρμογών παρουσιάζεται προκειμένου να φανεί η αξιοπιστία και η αποτελεσματικότητα της προτεινόμενης μεθόδου.
In this master thesis the hysteretic behavior of shell structures is examined. It refers to the nonlinear response of elastoplastic structures undergoing cyclic dynamic loading i.e. an issue of major importance for structural engineering. In order to take into account the inelastic response, more accurate material models are needed and herein, the Bouc-Wen model is used, which is a smooth, hysteretic, rate independent model. This model is very versatile as it allows the simulation of a variety of hysteretic behavior simply by using a smooth function. A MATLAB code was written in order to study this hysteretic behavior, based on nine node isoparametric shell elements. These elements can be double curved as the geometry of each one is taken into account indirectly using a numerical approach and establishing an orthogonal coordinate system at each node which fully describe the geometry of the element. The hysteresis is taken into account by decomposing the global stiffness matrix into two parts, namely the elastic and the hysteretic stiffness matrix. The elastic stiffness matrix of the structure is evaluated once at the beginning of the analysis and remains constant at all the subsequent steps, while the hysteretic part is updated at every analysis step. Finally, the system of the differential equations that describe the problem is solved using the Newmark Numerical Integration Scheme. Results are presented that demonstrate the validity and efficiency of the proposed method.