Στη μηχανική με τον όρο "λυγισμό", νοείται αστοχία λόγω απώλειας της ευστάθειας ενός φορέα που υπόκειται μόνο σε αυστηρά κεντρικό αξονικό φορτίο. Η ύπαρξη, ωστόσο αρχικών ατελειών ή εκκεντρότητας του φορτίου, οδηγεί στην καμπτοθλιπτική καταπόνησή του μέλους. Έτσι, η κατανομή των τάσεων καθ' ύψος της διατομής δεν είναι ομοιόμορφη, και η τάση στη δυσμενέστερη ίνα του μέλους, που είναι η ακραία θλιβόμενη της μεσαίας διατομής, μπορεί να φτάσει την τιμή της τάσης διαρροής πριν φτάσει η φόρτιση το κρίσιμο φορτίο λυγισμού, οπότε και έχουμε πλαστικό λυγισμό.
Το φαινόμενο του πλαστικού λυγισμού εμφανίζεται περισσότερο σε ένα εύρος τιμών της λυγηρότητας των υποστυλωμάτων. Για τιμές λυγηρότητας περίπου 60-75, επιλέξαμε υποστυλώματα με πέντε άπό τις πιο συνήθεις πρότυπες διατομές και ελέγξαμε το φαινόμενο του πλαστικού λυγισμού, αφού θεωρήσαμε σε αυτά διάφορες τιμές αρχικών βελών, επί του ισχυρού άξονα. Για να το κάνουμε αυτό, θέσαμε κάποιες παραδοχές και εν συνεχεία προσεγγίσαμε θεωρητικά την εκδήλωση του φαινομένου. Το επόμενο βήμα είναι η σύγκριση των αποτελεσμάτων που προέκυψαν από την προσέγγισή μας, με τις αντίστοιχες κρίσιμες τιμές που προκύπτουν από τον Ευρωπαικό Κανονισμό (EC3) και η επαλήθευση των αποτελεσμάτων από πρόγραμμα Η/Υ με τη μέθοδο των πεπερασμένων στοιχείων (Abaqus). Τέλος, παρουσιάζονται καμπύλες λ-Pel Pcr (λυγηρότητας – ελαστικού φορτίου και κρίσιμου φορτίου) για τις υπό μελέτη διατομές,, όπου φαίνεται η επιδραση της λυγηρότητας στην εκδήλωση του πλαστικού λυγισμού.
Το φαινόμενο του πλαστικού λυγισμού, χαρακτηρίζεται από μικρές τιμές του ποσοστού της διαφοράς ανάμεσα στο κρίσιμο φορτίο (πλαστικό) και του ελαστικού φορτίου (φορτίο πρώτης διαρροής) ως προς το δεύτερο. Οι τιμές αυτές της πλαστικής “υπεραντοχής” εξαρτώνται από τη διατομή και την ποιότητα του χάλυβα, αλλά ακόμη περισσότερο από τη λυγηρότητα του κάθε υποστυλώματος. Επίσης, είδαμε ότι όσο πιο μεγάλη είναι η αρχική ατέλεια (αρχικό βέλος κάμψης), τόσο μικρότερο είναι το κρίσιμο φορτίο και τόσο πιο μεγάλη η τελική παραμόρφωση του υποστυλώματος.
In engineering, the term "buckling" means failure due to loss of stability of a member, that is subject of strictly central axial load. The presence, however, of initial imperfections or load eccecintricity leads to compressive and flexural loading of the member. Thus, the stress distribution on height of the section is not uniform., and the stress of the least favourable fiber of the member, which is the farther fiber under compression at the middle section of the member, can reach the value of the characteristic yield stress of the steel, before the load reaches the critical buckling load, so it appears the effect of inelastic buckling.
This effect appears more in a value range of the slenderness of the columns. For values at about 60 – 75, we chose columns of five of the more common standard section profiles and tested the effect of inelastic buckling, since we considered different values of initial bending displacement, on the strong axis. To do that, we have some assumptions and then we approached theoritically the progress of the effect. The next step is the comparison of the theoritical results of our approach, with the corresponding critical values result-ing by the Eurocodes. (EC3) and the verification of the results with the use of a PC programm with finite elements analysis (abaqus). Finally, are being presented some λ-Pel Pcr (slenderness – elastic load and critical load) curves for the studied sections, where we can see the effects of the slenderness at inelastic buckling.
The effect of inelastic buckling, characterized by small values of the percentage of the difference be-tween the critical load (inelastic) and the elastic load (first failure) divided by the second. The values of this inelastic “overstrength”, depend on the section and the quality of the steel, but even more on the slenderness of each column. We also noticed, tha the bigger the initial imperfection (initial bending displacement), the less the critical load, and the bigger the final displacement of the column.