dc.contributor.author |
Machias, AV |
en |
dc.date.accessioned |
2014-03-01T01:07:05Z |
|
dc.date.available |
2014-03-01T01:07:05Z |
|
dc.date.issued |
1988 |
en |
dc.identifier.issn |
0003-9039 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/9776 |
|
dc.subject |
Delta Method |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.other |
ELECTRIC MACHINERY - Transients |
en |
dc.subject.other |
MATHEMATICAL TECHNIQUES - Differential Equations |
en |
dc.subject.other |
DELTA METHOD |
en |
dc.subject.other |
FLUX-DECAY EFFECT |
en |
dc.subject.other |
GOVERNOR ACTION |
en |
dc.subject.other |
THIRD-ORDER NONLINEAR SWING EQUATION |
en |
dc.subject.other |
TRANSIENT STABILITY |
en |
dc.subject.other |
ELECTRIC MACHINERY, SYNCHRONOUS |
en |
dc.title |
An extension of delta method to synchronous machine transient stability study |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/BF01574048 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/BF01574048 |
en |
heal.language |
English |
en |
heal.publicationDate |
1988 |
en |
heal.abstract |
The delta method is applied to solve the transient stability problem of a synchronous machine connected to an infinite bus. In the machine analysis emphasis is placed on the governor action or flux-decay effect. The swing equation of the machine is a third-order non linear differential equation. In the paper the delta method is extended to this third-order nonlinear swing equation. - The system trajectory and the critical clearing time of the system have been obtained. A numerical example is given. © 1988 Springer-Verlag. |
en |
heal.publisher |
Springer-Verlag |
en |
heal.journalName |
Archiv für Elektrotechnik |
en |
dc.identifier.doi |
10.1007/BF01574048 |
en |
dc.identifier.isi |
ISI:A1988L968200008 |
en |
dc.identifier.volume |
71 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
125 |
en |
dc.identifier.epage |
130 |
en |