HEAL DSpace

Truncated newton methods for nonlinear finite element analysis

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Papadrakakis, M en
dc.contributor.author Gantes, CJ en
dc.date.accessioned 2014-03-01T01:07:19Z
dc.date.available 2014-03-01T01:07:19Z
dc.date.issued 1988 en
dc.identifier.issn 0045-7949 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/9930
dc.subject Approximate Solution en
dc.subject Convergence Rate en
dc.subject Degree of Freedom en
dc.subject Direct Method en
dc.subject Exact Solution en
dc.subject Finite Element en
dc.subject Finite Element Mesh en
dc.subject Finite Element Method en
dc.subject Iteration Method en
dc.subject Iterative Solution en
dc.subject Large Scale en
dc.subject Large-scale Problem en
dc.subject Line Search en
dc.subject Linear Equations en
dc.subject Linear System of Equations en
dc.subject Local Convergence en
dc.subject Newton Iteration en
dc.subject Nonlinear Finite Element Analysis en
dc.subject Nonlinear Problem en
dc.subject Potential Energy en
dc.subject Preconditioned Conjugate Gradient en
dc.subject Structure Analysis en
dc.subject Taylor Series Expansion en
dc.subject Truncated Newton Method en
dc.subject.classification Computer Science, Interdisciplinary Applications en
dc.subject.classification Engineering, Civil en
dc.title Truncated newton methods for nonlinear finite element analysis en
heal.type journalArticle en
heal.identifier.primary 10.1016/0045-7949(88)90306-9 en
heal.identifier.secondary http://dx.doi.org/10.1016/0045-7949(88)90306-9 en
heal.language English en
heal.publicationDate 1988 en
heal.abstract In the present study procedures for the solution of large-scale nonlinear algebraic discrete equations arising from the application of the finite element method to structural analysis problems are described and evaluated. The methods are based on Newton's method for the outer iterations, while for the linearized problem in each iteration the preconditioned conjugate gradient (CG) method is employed. This combination for the outer and inner iterations allows the use of less accuracy in computing exact Newton directions when far from the solution and the gradual increase in accuracy for the inner loops as the final solution is approached. This technique leads to the truncated Newton methods. Two preconditioning techniques for CG have been described and compared, namely the partial preconditioning and the partial elimination. Both techniques use a drop-off parameter ψ to control the computer storage demands for the extra matrix required. The results of two test examples are very encouraging as they show that the proposed method can be very effective in the solution of nonlinear finite element problems. © 1988. en
heal.publisher PERGAMON-ELSEVIER SCIENCE LTD en
heal.journalName Computers and Structures en
dc.identifier.doi 10.1016/0045-7949(88)90306-9 en
dc.identifier.isi ISI:A1988R118800033 en
dc.identifier.volume 30 en
dc.identifier.issue 3 en
dc.identifier.spage 705 en
dc.identifier.epage 714 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής